---------------------------------------------------------------------------------------------- ProtTest 3.4.2 Fast selection of the best-fit models of protein evolution (c) 2009-2016 Diego Darriba (1,2), Guillermo Taboada (2), Ramón Doallo (2), David Posada (1) (1) Facultad de Biologia, Universidad de Vigo, 36200 Vigo, Spain (2) Facultade de Informática, Universidade da Coruña, 15071 A Coruña, Spain ---------------------------------------------------------------------------------------------- Manual: http://darwin.uvigo.es/download/prottest_manual.pdf Homepage: http://github.com/ddarriba/prottest3 Discussion group: https://groups.google.com/group/prottest Contact: ddarriba@h-its.org, dposada@uvigo.es ---------------------------------------------------------------------------------------------- Version: 3.4.2 : 8th May 2016 Date: Wed Jan 08 05:08:39 IST 2025 OS: Linux (5.14.0-427.26.1.el9_4.x86_64) Arch: amd64 Java: 17.0.12 (Red Hat, Inc.) PhyML: /bentallab/programs/prottest-3.4.2/bin/PhyML_3.0_linux64 Citation: Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics, 27:1164-1165, 2011 ProtTest options ---------------- Alignment file........... : input_msa.phy Tree..................... : BioNJ StrategyMode............. : BIONJ Tree Candidate models......... : Matrices............... : JTT LG MtREV Dayhoff WAG CpREV Distributions.......... : Uniform Observed frequencies... : false Statistical framework Sort models according to....: AICc Sample size.................: 301.0 Other options: Display best tree in ASCII..: false Display best tree in Newick.: false Display consensus tree......: false Verbose.....................: false ********************************************************** Observed number of invariant sites: 1 Observed aminoacid frequencies: A: 0.063 C: 0.003 D: 0.084 E: 0.067 F: 0.035 G: 0.072 H: 0.015 I: 0.071 K: 0.043 L: 0.068 M: 0.019 N: 0.052 P: 0.057 Q: 0.036 R: 0.044 S: 0.066 T: 0.081 V: 0.086 W: 0.003 Y: 0.034 ********************************************************** Model................................ : JTT Number of parameters............... : 597 (0 + 597 branch length estimates) -lnL................................ = 63893.71 (seconds)) Model................................ : LG Number of parameters............... : 597 (0 + 597 branch length estimates) -lnL................................ = 63452.29 (seconds)) Model................................ : MtREV Number of parameters............... : 597 (0 + 597 branch length estimates) -lnL................................ = 68033.93 (seconds)) Model................................ : Dayhoff Number of parameters............... : 597 (0 + 597 branch length estimates) -lnL................................ = 64752.10 (seconds)) Model................................ : WAG Number of parameters............... : 597 (0 + 597 branch length estimates) -lnL................................ = 63280.69 (seconds)) Model................................ : CpREV Number of parameters............... : 597 (0 + 597 branch length estimates) -lnL................................ = 63552.18 (seconds)) ************************************************************ Date : Wed Jan 08 05:10:47 IST 2025 Runtime: 0h:02:08 *************************************************************************** Best model according to AICc: WAG Confidence Interval: 100.0 *************************************************************************** Model deltaAICc AICc AICcw -lnL --------------------------------------------------------------------------- WAG 0.00 125351.30 1.00 63280.69 LG 343.20 125694.50 0.00 63452.29 CpREV 542.99 125894.29 0.00 63552.18 JTT 1226.04 126577.34 0.00 63893.71 Dayhoff 2942.82 128294.12 0.00 64752.10 MtREV 9506.48 134857.78 0.00 68033.93 --------------------------------------------------------------------------- --------------------------------------------------------------------------- *********************************************** Relative importance of parameters *********************************************** alpha (+G): No +G models p-inv (+I): No +I models alpha+p-inv (+I+G): No +I+G models freqs (+F): No +F models *********************************************** Model-averaged estimate of parameters *********************************************** alpha (+G): No +G models p-inv (+I): No +I models alpha (+I+G): No +I+G models p-inv (+I+G): No +I+G models