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A new method called the neighbor-joining method is proposed for reconstructing
phylogenetic trees from evolutionary distance data. The principle of this method
is to find pairs of operational taxonomic units (OTUs [=neighbors]) that minimize
the total branch length at each stage of clustering of OTUs starting with a starlike
tree. The branch lengths as well as the topology of a parsimonious tree can quickly
be obtained by using this method. Using computer simulation, we studied the
efficiency of this method in obtaining the correct unrooted tree in comparison with
that of five other tree-making methods: the unweighted pair group method of anal-
ysis, Farris’s method, Sattath and Tversky’s method, Li’s method, and Tateno et
al.’s modified Farris method. The new, neighbor-joining method and Sattath and
Tversky’s method are shown to be generally better than the other methods.

Introduction
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In the construction of phylogenetic trees, the principle of minimum evoluti%
or maximum parsimony is often used. The standard algorithm of the tree-making
methods based on this principle is to examine all possible topologies (branching pgt-
terns) or a certain number of topologies that are likely to be close to the true tree and
to choose one that shows the smallest amount of total evolutionary change as the final
tree. This method is quite time consuming, and, when the number of operatioﬂial
taxonomic units (OTUSs) is large, only a small proportion of all possible topologiesis
examined. However, there are methods in which the process of searching for ’@e
minimum evolution tree is built into the algorithm, so that a unique final topology.is
obtained automatically. Some examples are the distance Wagner (DW) method (Fal?gis
1972), modified Farris (MF) methods (Tateno et al. 1982; Faith 1985), and the nei@-
borliness methods of Sattath and Tversky (ST method; 1977) and Fitch (1981). Thgse
methods are not guaranteed to produce the minimum-evolution tree, but their effi-
ciency in obtaining the correct tree is often better than that of the standard maximugn-
parsimony algorithm (Saitou and Nei 1986). In the following we would like to presgnt
a new method (the neighbor-joining [NJ] method) that produces a unique final tfee
under the principle of minimum evolution. This method also does not necessatily
produce the minimum-evolution tree, but computer simulations have shown that3it
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Neighbor-joining Method 407

is quite efficient in obtaining the correct tree topology. It is applicable to any type of
evolutionary distance data.

Algorithm

The algorithm of the NJ method is similar to that of the ST method, whose
objective is to construct the topology of a tree. Unlike this method, however, the NJ
method provides not only the topology but also the branch lengths of the final treg

Before discussing the algorithm of the present method, let us first define the tegm
“neighbors.” A pair of neighbors is a pair of OTUs connected through a single inteﬁor
node in an unrooted, bifurcating tree. Thus, OTUs 1 and 2 in figure 1 are a palfpf
neighbors because they are connected through one interior node, A. There are @vo
other pairs of neighbors in this tree (viz., [5, 6] and [7, 8]). The number of pairsof
neighbors in a tree depends on the tree topology. For a tree with N (=4) OTUs, ?he
minimum number is always two, whereas the maximum number is N/2 when IY? is
an even number and (N — 1)/2 when N is an odd number.

If we combine OTUs 1 and 2 in figure 1, this combined OTU (1-2) and OT@ 3
become a new pair of neighbors. It is possible to define the topology of a treecby
successively joining pairs of neighbors and producing new pairs of neighbors. Eor
example, the topology of the tree in figure 1 can be described by the following pars
of neighbors: [1, 2], [5, 6], [7, 8], [1-2, 3], and [1-2-3, 4]. Note that there is anotﬁer
pair of neighbors, [5-6, 7-8], that is complementary to [1-2-3, 4] in defining the topolqu
In general, N — 2 pairs of neighbors can be produced from a bifurcating tree oﬁ'N
OTUs. By finding these pairs of neighbors successively, we can obtain the tree topol

Our method of constructing a tree starts with a starlike tree, as given in ﬁggre
2(a), which is produced under the assumption that there is no clustering of OTUsgIn
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FIG. 1.—An unrooted tree of eight OTUs, 1-8. A-F are interior nodes, and italic numbers are branch
lengths.
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practice, some pairs of OTUs are more closely related to each other than other pairs
are. Consider a tree that is of the form given in figure 2(b). In this tree there is only
one interior branch, XY, which connects the paired OTUs (1 and 2) and the others
(3,4, ..., N) that are connected by a single node, Y. Any pair of OTUs can take the
positions of 1 and 2 in the tree, and there are N(N — 1)/2 ways of choosing them.
Among these possible pairs of OTUs, we choose the one that gives the smallest suin
of branch lengths. This pair of OTUs is then regarded as a single OTU, and the ngxt
pair of OTUs that gives the smallest sum of branch lengths is again chosen. Tgls
procedure is continued until all N — 3 interior branches are found.

The sum of the branch lengths is computed as follows: Let us define D;; and @ab
as the distance between OTUs i and j and the branch length between nodes a and3b
respectively. The sum of the branch lengths for the tree of figure 2(a) is then glven%)y

N
So= ZL,-X N ZDur

i=1 I<j

No"oIWAREO.)/:S

since each branch is counted N — 1 times when all distances are added. On the otEpr
hand, the branch length between nodes X and Y (Lyy) in the tree of figure 2(b)315
given by

[ Z (Dix+ Do) —(N—2)(Lix+ Lax) — 2 Z Ly].

i=3

L
XY= (N 2)",

sqe-eye/equ/

The first term within the brackets of equation (2) is the sum of all distances tiat
include Lyy, and the other two terms are for excluding irrelevant branch lengths.%lf
we eliminate the interior branch (XY) from figure 2(b), two starlike topologies (one
for OTUs 1 and 2 and the other for the remaining N — 2 OTUs) appear. Thus, E, Pe

+ L,y and 2 ; L,y can be obtained by applying equation (1): g
(]
(o]
~
Lix+ Lyx= D3, (3a)
g
N 2
2L 2 Dj. (3b)
i=3 3 <i<j g
@
8 g
8 g
1 7 , 7 S
6 B
2 X 6 g
3
2 o
3 5 4 N
o
4 3 =

(@) (b)

FIG. 2.—(a), A starlike tree with no hierarchical structure; and (b), a tree in which OTUs 1 and 2 are
clustered.
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Adding these branch lengths, we find that the sum (S),) of all branch lengths of the
tree in figure 2(b) becomes

N
Sia=Lyy+(LixtLx)+ 2 Liy
i=3

S
~

1 N
= D
2(N_2)k23(D1k+ %)+ 5 D12+N >

2 Dy

3=<i<j

9PEOJUMO(] o~

It can be shown that equation (4) is the sum of the least-squares estimates of branch
lengths (see Appendix A).

In general, we do not know which pairs of OTUs are true neighbors. Therefore
the sum of branch lengths (S;) is computed for all pairs of OTUs, and the pair ﬂ_i_at
shows the smallest value of S;; is chosen (inferred) as a pair of neighbors. In practﬁe
even this pair may not be a pair of true neighbors; but, for a purely additive tree v\&th
no backward and parallel substitutions, this method is known to choose pairs of tEue
neighbors (see the following section—Criterion for Minimum-Evolution Tree—fﬁor
detail). At any rate, if S, is found to be smallest among all .S;; values, OTUs 1 an§ 2
are designated as a pair of neighbors, and these are joined to make a combined O”§U

(1-2). The distance between this combined OTU and another OTU j is given by g
]
oy

D)= (Dyj+ Dy)/2 (3=j=N). £5)
(¢]
QO

Thus, the number of OTUs is reduced by one, and, for the new distance matrix, the
above procedure is again applied to find the next pair of neighbors. This cyclé? is
repeated until the number of OTUs becomes three, where there is only one En-
rooted tree.

The branch lengths of a tree can be estimated by using Fitch and Margohasﬁ s
(1967) method. Suppose that OTUs 1 and 2 are the first pair to be joined in the tree

ov/v

of figure 1. L,y and L,y are then estimated by %
g
Lix= D2+ Dyz— D17)/2, (6a)
QO
<.
2x = (D12+ Da2z— D\z)/2, (éb)
)
('D

where D, = (™3 Dy;)/(N — 2) and D,z = (23 D»)/(N — 2). Here, Z repres@ts
a group of OTUs including all but 1 and 2, and D,z and D, are the distances betwgen
1 and Z and 2 and Z, respectively (see Nei 1987, pp. 298-302, for an elementgry
exposition of this method). L,y and L,y are the least-squares estimates for the tree’of
figure 2(b) (see Appendix A), and they are estimates of L, and L, 4, respectively,in
figure 1. Once L, and L,, are estimated, OTUs 1 and 2 are combined as a single
OTU (1-2), and the next neighbors are searched for. Suppose that (1-2) and 3 are the
next neighbors to be joined, as in figure 1. Branch lengths L, 55 and Lsp are ab-
tained by applying equations (6a) and (6b). Furthermore, L, is estimated @)y
L.28 — (D12)/2. The above procedure is applied repeatedly until all branch lengths
are estimated. If a tree is purely additive, this method gives the correct branch lengths
for all branches (see Appendix B).

The principle of the NJ method can be extended to character-state data such as
nucleotide or amino acid differences. In this case, one can use the total number of
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Table 1
Distance Matrix for the Tree in Figure 1
OTU
OTU 1 2 3 4 5 6 7
g
2. 7 z
3. 8 5 >
4 . 11 8 5 j%’
5 . 13 10 7 8 3
6 . 16 13 10 11 5 g
7. 13 10 7 8 6 9 3
8 . 17 14 11 12 10 13 8 Z
@
N
O

substitutions in place of the sum of branch lengths (S;;), though the actual proce&ure
is a little more complicated than that given above (Saitou 1986, pp. 90-98). Howéver
since the algorithm turns out to be very similar to that of Hartigan (1973), we ghall
not present it here. Note also that most character-state data can be convertedgnto
distance data so that the above simpler algorithm applies.

An example: consider the distance matrix given in table 1. The distance L% in
this matrix is obtained by adding all relevant branch lengths between OTUs i and j
in figure 1 under the assumption that there is no backward and parallel substitugion.
The result of application of the NJ method is presented in table 2 and figure 3. I the

Table 2
S;; Matrices for Two Cycles of the NJ Method for the Data in Table 1

A. Cycle 1: Neighbors = [1, 2]

Ayisieniun Aine 193 4q Y99GZOL/90L7/7/17/109113

OTU
OTU 1 2 3 4 5 6
2. 36.67
3. 38.33 38.33
4 . 39.00 39.00 38.67
5 . 40.33 40.33 40.00 39.67
6 . 40.33 40.33 40.00 39.67 37.00
7. 40.17 40.17 39.83 39.50 38.83 38.83 s .
8 . 40.17 40.17 39.83 39.50 38.83 38.83 32.67
=]
B. Cycle 2: Neighbors = [5, 6] N
—
[0]
OTU el
(0]
3
OTU 1-2 3 4 5 6 @
N
o
3. 31.50 ©
4 . 32.30 32.30
5. 33.90 33.90 33.70
6 . 33.90 33.90 33.70 31.30
7. 33.70 33.70 33.50 33.10 33.10
8 . 33.70 33.70 33.50 33.10 33.10 31.90
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@ (e) )

FI1G. 3.—Application of the neighbor-joining method to the distance matrix of table 1. Italic nu
are branch lengths, and branches with thicker lines indicate that their lengths have been determined.
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search for the first pair of neighbors (cycle 1), OTUs 1 and 2 are chosen becausc%Slz
is smallest among 28 S;’s (see table 2). S;, (= 36.67) is smaller than the sum%So
= 39.28) of branch lengths of the starting starlike topology, but, interestingly, s%me
S;/’s are larger than Sp. D,z and D,z in equations (6a) and (6b) become 13 andgl 0,
respectively. Thus, the branch lengths L, and L, , are obtained to be (7 + 13 — 310)/
2 = 5and (7 + 10 — 13)/2 = 2, respectively, which are identical with those ofahe
true tree in figure 1 (fig. 3[a]). OTUs 1 and 2 are then combined, and the ave@ge
distances (D(5);; 7 = 3, . . . , 8) are computed by equation (5). In the next step (cycle
2 in table 2), OTUs 5 and 6 are found to be a pair of neighbors, and Lsz and L6§are
estimated to be 1 and 4, respectively, which are again identical with those of the irue
tree (fig. 3[b]). In cycle 3, OTUs (1-2) and 3 are chosen as a pair of neighbors, and
the branch lengths for Lz and L, 5 become 1 and 5.5, respectively. Thus, the branch
length L,z is estimated to be 5.5 — 7, = 2. These are again the correct values iﬁg
3[c]). In cycle 4, [1-2-3, 4] is identified as a pair of neighbors (fig. 3[d]), and in cgcle
5 [1-2-3-4, 5-6] is chosen. The choice of the latter pair of neighbors automa’uc&l]y ,
leads to the identification of the final pair of neighbors [7, 8]. The S; for [1-2- 3-45 5-
6] is identical with that for [7, 8]. The topology of the reconstructed tree is thererfore
given by figure 3(e), which is identical with that of figure 1. The branch lengthSc/Lw
(=L;z = 2) and Lgr (=Lg, = 6) are obtained by using equations (6a) and (6b), whe‘feas
Lprbecomes L 2.3.4.5.6z — D2.3ays-6/2 = 2 (fig. 3[f]). It is thus clear that all br@ch
lengths as well as the topology are correctly reconstructed in the present case.

610¢ 18

Criterion for the Minimum-Evolution Tree

In this section, we first show that the algorithm developed above produces the
correct tree for a purely additive tree. We shall then discuss a criterion for the minimum-
evolution tree.
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Consider a tree for N (=4) OTUs and assume that OTUs 1 and 2 are a pair of
true neighbors. For an additive tree, we obviously have the following inequalities.

D12+D"j<D|,‘+D2j, D12+Dij<DU+D2,‘, (7)

where i and j are any OTUs (3 < i < j < N). Under this condition, it can be shgyvn
that S), is smaller than S}, or Sy, (3 < j < N). To show this, let us consider the paifing
of OTUs 1 and 3 as an example. The total length of the tree with this pairing carﬁbe
written as

S ———I——ZD L %(D +D )+~MD a)
13 N_2i<j T N= 2)k , 1k 3k 2AN=2) 13
k#3

In a similar manner,

1 1 N—4
= SD,- D Dy.
Si2 N_zzj T 2)k23(D1k+ 2k)+2(N_2) 12 b)
Hence,
N-3 1 v
Si3—S12= AN 2)(D13 D12)+2(_N_—2)'k§4(D2k—D3k)

1Sge-9|o1e/aqW/WOEENo-olWwapede//:sdiygauol) pap
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~

1
T2N-2),%,

2 [(D13+ Dyx) — (D12 + Dig)).

Z@/QOV/V/V/IOBJ

N~

If we note the inequalities in formula (7), D, + D3 < Dy3 + Dy, (4 < k <
Therefore, S13 > S;>. The same inequality also holds for any other pairs 1nv01\f<§ng
OTUs 1 and 2: Sy; > Sz and Sy > S12 (3 < j < N). Furthermore, in our algontgm
we search for a pair of OTUs that shows the smallest S;. Therefore, if OTUs 1! anﬂ 2
are such a pair, S;, must be smallest among all S;’s. However, this is not what'We
need in our algorithm. Our algorithm requires that if S|, is smallest among all .§ s,
OTUs 1 and 2 are neighbors. Proof of this theorem is somewhat complicated, blﬁ it
can be done (see Appendix C). Therefore, our algorithm produces the correct unrodted
tree for a purely additive tree. Z

Of course, actual data usually involve backward and parallel substltutlonsgso
that there is no guarantee that the correct topology is obtained by the NJ metlmd
However, computer simulations, which will be discussed below, have shown that
compared with other methods, the NJ method is efficient in obtaining the corrcct
topology.

In constructing the topology of a tree, Sattath and Tversky (1977) and F@ch
(1981) used the inequalities in formula (7). Their method is to count the num%er
(neighborliness) of cases satisfying formula (7) for each pair of OTUSs and choose the
pair showing the largest number as neighbors. Since Sattath and Tversky’s (19g?7)
algorithm uses equation (5) for making the new distance matrix, their method is
expected to give a result similar to ours. Fitch (1981) uses interior-distance matrices
for constructing the topology, so that his algorithm is different from ours. Nevertheless,
these three methods as well as some other tree-making methods require the same
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condition for obtaining the correct topology for the case of four OTUs, as
shown below.

Let us consider the tree of four OTUs given in figure 4. Saitou and Nei (1986)
showed that the condition for obtaining the correct unrooted tree for four OTUs is
the same for the DW method (Farris 1972), the MF methods (Tateno et al. 1982;
Faith 1985), and the transformed-distance method (Farris 1977; Klotz and Blanlgn
1981; Li 1981). It is given by

D3+ D33 < D3+ Doy, D3+ D34 < D4+ Da3.

—_
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The same condition is required for the NJ method. When N = 4, equation (4) redu
to

S12=(D13+ D14+ D3+ D2)/4 + (D12 + D34)/2.
We also have S35 = S),, and

S13 =824 =(D12+ D14+ Dy3+ D34)/4 +(Dy3+ D24)/2,

—~
p—
~

S14=823=(D12+ D3+ D2+ D34)/4+ (D14 + Dy3)/2.

~_
—
—

In figure 4, [1, 2] and [3, 4] are pairs of neighbors. Thus S;, < Sj3 and S, < S,le
the necessary condition to obtain the correct topology. From this condition and qua—
tions (11), we obtain formula (10). The inequalities in formula (10) are also the cén-
dition required for neighborliness methods (Sattath and Tversky 1977; Fitch 1981 ﬁto
produce the correct topology. The condition posited by formula (10) is similar to “the
four-point condition” (Buneman 1971) or “relaxed additivity” (Fitch 1981). E
The condition posited by formula (10) may be used as a criterion for the mlm-
mume-evolution tree (minimality test). If this condition holds for any group of f@r
OTU s of a reconstructed tree, the tree is likely to be the minimum-length tree (F@h
1981). Furthermore, this condition can be extended to test each interior branch of a
tree. Let us consider the interior branch CD of the tree in figure 1 as an exampleZIf

this branch really exists, the following inequalities should be satisfied. g
c

D(1.2.33 + Dis.6)7-8) < D(1:2.3x5-6) T Dar8), (%2)
Dq.2-3 + Dis.ex7-8) < Di1-2-3y37-8) + Dags-6), E»

where D23 = (D14 + Das + D34)/3, Dissxr.8) = (Ds1 + Dg7 + Dsg + Dgs)/4, andﬂso
on. Numerical computation shows that this is indeed the case. If we conduct a simifar
test for the five remaining interior branches of the tree in figure 1, the existence oftall

branches is justified. icj?
3
1 4 &
N
o
o
2 3

FIG. 4.—An unrooted tree for four OTUs
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An example: applying his neighborliness method to Case’s (1978) data on im-
munological distance, Fitch (1981) constructed a phylogenetic tree of nine frog (Rana)
species. If we use the NJ method, a slightly different tree is obtained (fig. 5); that is,
while the closest species to the R. aurora-R. boylii group is R. cascadae in Fitch’s tree,
it is R. muscosa in our tree. The latter topology is also obtained by the ST method.
We can apply the minimality test in formula (10) to see which topology is mege
reasonable. The test can be done if we consider the four OTU groups, i.e., the aur(ga
and boylii group, muscosa, cascadae, and the remaining five species. ApplicationSpf
the test supports the topology presented in figure 5 rather than Fitch’s. Comparis§n
of the sum of branch lengths between the two topologies also supports the topology
in figure 5. (This particular comparison was conducted under the condition that %ll
branch lengths are nonnegative and that each estimated [patristic] distance is grea@r
than or equal to the corresponding observed distance, because Fitch’s tree was ccm-

structed under this condition.) We also note that the branch lengths estimated by t&e
NJ method are close to those estimated by a linear programming method (ge
Fitch 1981).

Efficiency of the NJ Method in Recovering the Correct Topology

Woo°dno-ol

Since the exact evolutionary pathways of extant organisms are usually unknown,
it is not suitable to use real data for examining the efficiency of a tree-making methed.
Therefore, we employed a computer simulation, comparing reconstructed trees with
their model trees. In this study we compared the efficiency of the NJ method w?ah
that of five other methods: UPGMA (Sokal and Sneath 1963), the DW method, ﬁae
ST method, Li’s (LI; 1981) method, and the MF method. The LI method is a trags—
formed distance method (see Nei [1987, pp. 302-305] for the explanation of the traﬁs-
formed distance method), and the MF method is a modification of Farris’s (19’#2)
method. All these methods produce a unique parsimonious tree from distance da@a
We considered both cases of constant and varying (expected) rates of nucleotide s@
stitution.

3 R. aurora

R. boylii

R. muscosa

R. cascadae
R. temporaria
24.0

R. pretiosa

R. catesbeiana

6102 lequeldag gz uo Jasn AlisiaAlun AlAe |81 A £996

R. pipiens

R. tarahumarae

FIG. 5.—Tree obtained by the NJ method from immunological distance data of Case (1978)
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Constant Rate of Nucleotide Substitution

To examine the effect of topological differences, we considered two different
model trees (trees [A] and [B] of fig. 6), both of which consist of eight OTUs. Model
tree (A) has two neighboring pairs ([1, 2] and [7, 8]), whereas model tree (B) has four
(1, 2], [3, 4], [5, 6], and [7, 8]). To make the effect of branch lengths comparable for
the two model trees, we assumed that the interior branch length (a) is the same for
both trees. We also tried to make the average (D) of all pairwise distances (Dy’s) neafi;iy
the same for the two trees. Hence, we set ¢ = b + 3a or ¢ = b + 3a, where g, b, and
¢ are the expected branch lengths (expected numbers of nucleotide substitutions %Ler
site) given in figure 6. In a computer simulation conducted with the same topology
as that of model tree (A), Tateno et al. (1982) set a = b. In the present study, we_z_giet
a < b in model tree (A) so that the differences between different D;/’s were relatlv&y
smaller. This makes it more difficult to reconstruct the correct tree than in the cgse
of Tateno et al.’s simulation. &

The scheme of the computer simulation used is as follows: The ancestral sequer_?ce
of a given number of nucleotides was generated by using pseudorandom numbg%s,
and this sequence was assumed to evolve according to the predetermined branching
pattern of the model tree. Random nucleotide substitutions were introduced in e%h
branch of the tree following a Poisson distribution with the mean equal to the expecfed
branch length. Although the expected rate of nucleotide substitution was the same for
all lineages, the actual number of substitutions varied considerably with lineage beca@ise
of stochastic errors. After the nucleotide sequences for eight OTUs were producgd,
nucleotide differences were counted for all pairs of sequences, and the evolutioné’ry
distance (Jukes and Cantor 1969) was computed for each pair of OTUs. With the j&jx
tree-making methods mentioned above, tree topologies were determined from dita
either on the proportion of different nucleotides between the two sequences compalgd
(p) or on the Jukes-Cantor distance (d). Note that p is a metric, whereas d is not. Téhe
entire process of simulation was repeated 100 times. @

Two measures are used to quantify the efficiency of a tree-making methodﬁn
recovering the topology of the model tree. One is the proportion (P,) of correct trges
(topologies) obtained. The other is the average distortion index (Tateno et al. 19%)
based on Robinson and Foulds’ (1981) metric on tree comparison. The distortien
index (dr) is twice the number of branch interchanges required for a reconstructed

tree to be converted to the true tree. Here, we consider only unrooted trees. §

a g 1 a g 1 N

2 050 2 @

a+b C !

3 3 o

2a+b c el

4 4 g

3a+b g c 5 N

40+b ¢ C 6 o
50:’; 7 050q C 7

(A) (B)

FIG. 6.—Model trees (A) and (B) under the assumption of constant rate of nucleotide substitution
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Table 3
P, and d; (in parentheses) for Six Tree-making Methods for
the Case of a = 0.01, b = 0.04, and ¢ = 0.07

MODEL TREE A* MODEL TREE B?*
METHOD 300 600 900 300 600 9005’
1
UPGMA
.. 14 (3.18) 36 (1.72) 58 (0.98) 14 (4.54) 36 (2.74) 51 (1. &)
e ....... 15 (3.18) 34(1.74) 56 (1.04) 13 (4.56) 35(2.70) 52 (1. 69)
MF: 3
f 2, 39 (1.76) 73 (0.58) 95 (0.10) 24 (2.86) 51 (1.30) 67 (0.?6)
d........ 38 (1.92) 72 (0.62) 95 (0.10) 19 (2.94) 48 (1.42) 64 (0.?;6)
DW:. a
P ... 42 (1.70) 75 (0.54) 96 (0.08) 26 (2.36) 55(1.12) 79 (0.%)
d........ 37(1.74) 74 (0.58) 95 (0.10) 28 (2.36) 58 (1.06) 79 (0.49)
(9]
LL o)
D .. 41 (1.58) 71 (0.70) 94 (0.12) 40 (2.04) 70 (0.78) 90 (0.?%2)
d........ 36 (1.84) 66 (0.82) 89 (0.24) 39 (2.10) 70 (0.78) 90 (0.%6)
ST: 3
)/, 48 (1.26) 75 (0.54) 97 (0.06) 45 (1.66) 75 (0.62) 91 (O.g)
d........ 44 (1.48) 70 (0.62) 96 (0.08) 43 (1.62) 74 (0.64) 91 (0.2:2_)
NIJ: %
D 48 (1.36) 76 (0.54) 97 (0.06) 46 (1.64) 76 (0.60) 91 (0.20)
d........ 41 (1.60) 70 (0.62) 96 (0.08) 45 (1.62) 75 (0.60) 91 (0.20)
Q
* As shown in fig. 6. &
® Trees reconstructed from data on the proportion of different nucleotides between the sequences compared. j\:
¢ Trees reconstructed from the Jukes-Cantor distance. S
S
)
©

Table 3 shows the results for the case of a = 0.01, b = 0.04, and ¢ = 0.07, wh@‘re
the D for all OTUs is 0.16 for both model trees. It is clear that in all tree-makmg
methods P, increases as the number of nucleotides used (n) increases, whereas ;dT
decreases. This is of course due to the fact that the sampling error of the distarice
between a pair of OTUSs decreases as n increases. The P. and d values obtained ;by
using p and 4 are nearly the same, though p tends to show a better performancean
recovering the correct topology, particularly for model tree (A).

In the case of model tree (A) UPGMA shows the poorest performance in te@s
of both criterion P, and criterion dy. Even when 900 nucleotides are used, the pfo-
portion of correct trees obtained is ~57%. The other five tree-making methods sh8w
a much better performance than UPGMA, and when 900 nucleotides are used, Pis
~95%. Interestingly, all of them show a similar performance for all #n’s examinedgn
the case of model tree (B), UPGMA again shows a poorer performance than any otger
method. In this case, however, all the five methods do not show the same performange
Rather, the NJ and the ST methods are better than the LI method, which is in tlgn
better than the DW and MF methods. ©

The results for the case of a = 0.02, » = 0.13, and ¢ = 0.19 are presented in table
4. The D for this case is 0.42 for model tree (A) and 0.43 for model tree (B). For
model tree (A), UPGMA shows an improved performance compared with the case in
table 3. However, all other methods show a small value of P, and a larger value of d
than those in table 3. This is apparently due to the fact that there are more backward
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Table 4
P, and dr (in parentheses) for Six Tree-making Methods for
the Case of a = 0.02, b = 0.13, and ¢ = 0.19

MODEL TREE A? MobDEL TREE B?*

METHOD 300 600 900 300 600 9005

=i

UPGMA S
P ... ... 15 (3.24) 50 (1.32) 62 (0.82) 11 (4.62) 28 (2.94) 54 (1.@)
d........ 15 (3.28) 49 (1.34) 61(0.84) 13 (4.50) 30 (2.90) 57 (1.451)
MF: 3
D 34 (2.38) 65 (0.82) 79 (0.44) 10 (4.00) 25(2.22) 43 (1.48)
d........ 30 (2.70) 62 (1.02) 76 (0.54) 9(4.12) 22 (2.28) 43 (1.@)
Dw: %\)
Do 27 (2.40) 66 (0.96) 77 (0.54) 17 (3.54) 39 (1.92) 54 (l.%)
d........ 27 (2.52) 62 (1.02) 70 (0.70) 18 (3.54) 36 (1.98) 53(1.1®)
LI 8
Do 23 (2.60) 44 (1.34) 67 (0.80) 25(3.54) 50 (1.52) 81 (0._5)
d........ 20 (2.82) 33(1.78) 55 (1.12) 20 (3.70) 49 (1.54) 81 (0.%))
ST: 3
D 35 (2.06) 67 (0.74) 82 (0.38) 34 (2.40) 60 (1.08) 82 (0.@)
d........ 26 (2.42) 61 (0.96) 78 (0.48) 31 (2.50) 58 (1.16) 83 (0.3%)
NIJ: S
D ... 36 (2.14) 64 (0.88) 83 (0.34) 34 (2.32) 63 (0.96) 82 (0.%)
d........ 26 (2.38) 58 (1.08) 78 (0.48) 33 (2.56) 61 (1.04) 83(0.38)

Q

NOTE.——Notations are as in table 3. g

* As shown in fig. 6. &
~

8

and parallel substitutions involved in this case. Nevertheless, UPGMA still showéa
poorer performance than all other methods except LI, which is less efficient th§n
UPGMA for the case of n = 600. The NJ, ST, DW, and MF methods give simifar
results, though the first two methods give slightly better results than the others foﬁn
= 900. We also note that p gives a better result than d for all methods but UPGMJ\
for which both p and d give essentially the same results. In the case of model tree (B)
the P, values for UPGMA are not necessarily higher than those in table 3, but ttg:y
are higher than those for the MF method for the same case. The DW method afo
shows a rather poor performance, though it is slightly better than the UPGMA aﬂd
MF methods. The NJ and ST methods again show the best performance, but thelr%c '
values are slightly lower than those for the case of table 3. The LI method is qlgte
good but not as good as the NJ and ST methods. Interestingly, p and d give simitar
results for all methods, unlike the case of model tree (A). o
Table 5 shows the results for the case of a = 0.03, b = 0.34, ¢ = 0.42, andaD
= 0.92 for tree (A) and 0.91 for tree (B). Compared with the two previous cases, the
frequency of backward and parallel substitutions is expected to be much higher becauge
of the larger Dj; values used. Therefore, we used n = 500, 1,000, and 2,000 for t@s
case. Yet, the P, values are smaller than those for the two previous cases. The relative
merits of different tree-making methods for the case of model tree (A) are more or
less the same as those for the case of table 4, except that the LI method tends to show
a poorer performance than UPGMA. When n = 500, the MF and DW methods show
a slightly higher value of P, than the ST and NJ methods, but for the other two n
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Table 5

P, and dr (in parentheses) for Six Tree-making Methods for

the Case of a = 0.03, » = 0.34, and ¢ = 0.42

MODEL TREE A?

MODEL TREE B*

METHOD 500 1,000 2,000 500 1,000 2,000

UPGMA g
D........ 9 (3.78) 27 (2.10) 62 (0.86) 10 (5.20) 18 (3.76) 54 (1.§2)
d........ 9 (3.78) 27 (2.10) 62 (0.88) 11(5.30) 18 (3.74) 55 (1.26)

MF: g
D........ 15 (4.02) 41 (1.82) 62 (0.92) 3(5.68) 17 (3.64) 28 (2.%))
d........ 13 (4.42) 34 (2.14) 55(1.14) 3(5.72) 13 (3.80) 26 (2:&8)

Dw: =
Do 16 (3.78) 46 (1.54) 63 (0.82) 4(5.42) 18 (3.28) 41 (1.§2)
d........ 15 (4.22) 40 (1.96) 58 (0.98) 5(5.50) 18 (3.48) 35 (1.§2)

LI 3.
P 3(4.26) 37 (2.00) 53 (1.18) 15 (4.48) 28 (2.98) 70 (O.gﬂ)
d........ 3(4.84) 25 (2.60) 39 (1.66) 12 (4.72) 27 (3.06) 66 (l.'gZ)

ST: o)
D 10 (3.56) 44 (1.62) 68 (0.76) 13 (4.00) 36 (2.34) 74 (0.62)
d........ 6 (4.06) 40 (1.82) 56 (1.04) 10 (4.32) 34 (2.34) 71 (0.82)

NI: ) &
P 11 (3.70) 44 (1.68) 67 (0.80) 13 (4.46) 34 (2.38) 75 (O.EZ)
d...... .. 5(4.24) 38 (2.00) 57 (1.06) 14 (4.44) 32(2.42) 73 (0.22)

NoOTE.—Notations are as in table 3. %

® As shown in fig. 6. Q

£

&

N

values they show more or less the same performance. Data on p again give a better
result for the five methods (except for UPGMA) than do those on d. In the caseé)f
model tree (B), the MF method shows a poorer performance than UPGMA, whwh
now gives results similar to the DW method. However, the P, values for the LI, §_T
and NJ methods are substantially higher than those for UPGMA and the DW meth@s

Although the above computer simulations were done for a limited numbermof
cases, the results obtained may be summarized as follows: (1) The efficiency of the NJ
method in recovering the true unrooted tree is virtually the same as that of the §T
method. (2) The NJ and ST methods perform well for both model tree (A) and moﬁel
tree (B), whereas the DW and MF methods are good only for tree (A) and theELI
method is good only for tree (B). For both model trees, UPGMA is rather poor“’m
recovering the true unrooted tree. (3) In the case of model tree (A), data on p tendgto
give slightly better results than those on d, except for UPGMA. For model tree (B),
however, both p and 4 give similar results. @

Conclusion (3) above indicates that data on p are better than those on d Eor
constructing a topology, particularly when the OTUs used form a topology similarzto
model tree (A). However, since p is not a linear function of nucleotide substitutio%s
it does not provide good estimates of branch lengths unless the p values are very sm@l
It is therefore advised that once a topology is obtained by using data on p, branch
lengths should be estimated by using data on d.

Tateno et al. (1982) and Sourdis and Krimbas (1987) conducted similar computer-
simulation studies, comparing the efficiency of the UPGMA and the DW and MF
methods as well as Fitch and Margoliash’s (1967) method for model tree (A). Although



Neighbor-joining Method 419

the parameter values used in their simulations are different from ours, their conclusions
with respect to unrooted trees are more or less the same as ours.

Varying Rate of Nucleotide Substitution

When the rate of nucleotide substitution varies from evolutionary lineage o
evolutionary lineage, the probability of obtaining the correct tree is expected to be
lower than that for the case of rate constancy. To see the effect of this factor on é_c:
we conducted another computer simulation. g

In this simulation, we used the two model trees ([A] and [B]) given in figured/.
The topologies of trees (A) and (B) in fig. 7 are identical, respectively, with those-of
trees (A) and (B) in figure 6. The value given for each branch of these trees is @e
expected branch length (the expected number of nucleotide substitutions per site). TEe
expected branch lengths for tree (A) in figure 7 were obtained under the assumptlgn
that b in figure 6(A) varies according to the gamma distribution with mean 0.04 agd
variance 0.08 (see Tateno et al. 1982 for the justification of this procedure). Similargy
the expected branch lengths for tree (B) in figure 7 were obtained under the assumptmn
that ¢ in figure 6(B) varies according to the gamma distribution with mean 0.07 agd
variance 0.14. The value of g and the expectation of D over all branches were 0,@1
and 0.016, respectively. Therefore, the simulations for model trees (A) and (B) c@r-
respond, respectively, to those for trees (A) and (B) in table 3. Once the expcc@d
length of a particular branch was determined, the actual number of nucleotide s@-
stitutions for that branch was obtained by using the Poisson distribution. The eight
nucleotide sequences thus obtained were used for the construction of phylogenetic
trees. This process was repeated 100 times. In this simulation, only the case of 680
nucleotides was examined, and the trees were constructed by using the p values. 5

The results of this simulation are presented in table 6. One striking feature%
this simulation is that the performance of UPGMA was very poor and that in node
of the 100 replications was the correct tree obtained for both model tree (A) and mo&l
tree (B). This is in sharp contrast to the case of rate constancy (table 3), in which ‘@
P, for UPGMA is 36% when n = 600. The effect of varying rate on the P, value is lgss
noticeable for the other tree-making methods. The P, values for the LI method are
somewhat lower than those for the case of constant rate (see tables 3 and 6). In @e
remaining four methods, the P, values are virtually the same for both cases of constant

610z Joqwaldag gz uo Jasn Ajsie.

(A) (B)

FiG. 7.—Maodel trees (A) and (B) under the assumption of varying rate of nucleotide substitution
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Table 6
P, and d; (in parentheses) for Six Tree-making Methods for
the Case of Varying Rate of Nucleotide Substitution

Method Model Tree A* Model Tree B*
UPGMA:p ... 0 (8.06) 0(9.74)
MFE:p ........ 77 (0.50) 57 (1.46)
DW:p ....... 69 (0.72) 59 (1.26)
LLp ......... 46 (1.30) 45 (1.68)
ST:p ........ 77 (0.50) 69 (0.82)
Nlp ........ 75 (0.56) 72 (0.78)

NoOTE.—Notations are as in table 3.
® As shown in fig. 7.

Iwspeoe//:sdny WoJj papeojumoq

and varying rates of nucleotide substitution. Therefore, the conclusions obtained:for
the case of constant rate also apply to the case of varying rate as far as the NJ, %T
MF, and DW methods are concerned.

Discussion

012G U /WO

Unlike the standard algorithm for minimum-evolution trees, the NJ method
minimizes the sum of branch lengths at each stage of clustering of OTUs starting \Eith
a starlike tree. Therefore, the final tree produced may not be the mlmmum-evolugon
tree among all possible trees. However, it should be noted that the real minimum-
evolution tree is not necessarily the true tree. Saitou and Nei (1986) have shown ﬁlat
the minimum-evolution or maximum-parsimony tree often has an erroneous topol@gy
and that the maximum-parsimony method of tree making is not always the besgin
recovering the true topology. It seems to us that the relative efficiencies of diﬂ“e@nt
tree-making methods should eventually be evaluated by computer simulation. Qur
computer simulation has shown that the NJ method is quite efficient compared V?gith
other tree-making methods that produce a single parsimonious tree.

We have shown that the estimates of branch lengths of the tree obtained by;the
NJ method are least-squares estimates determined at each stage of clustering of OT3Us.
This does not mean that these estimates are identical with those that are obtainable
by the least-squares method for all branches of the final tree topology. Neveﬂheﬁss,
this property gives some assurance about the reliability of the estimates of brafich
lengths. Particularly when the number of OTUs is four or less, the branch lengthscare
exactly least-squares estimates, as is clear from equation (A4) below. N

Our procedure of estimating branch lengths is essentially the same as thaf of
Fitch and Margoliash (1967). Some estimates of branch lengths may therefore became
negative. If one is reluctant to accept negative estimates, there are two ways to elimigate
them. One is to impose the condition that all branches be positive and then to reestimate
the branch lengths. The other is to assume that negative estimates are due to sampgng
error and that the real values are zero rather than negative. Under this assumption,
one may simply convert all negative estimates to zero. The second method is justified
if we note that the absolute values of negative estimates are usually very small.

A computer program for constructing a tree by using the NJ method is available
from the authors on request.
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APPENDIX A
Least-Squares Estimation of the Branch Lengths

20o|UMO(]

Let us consider the tree of figure 2(b). If we use matrix notation, the problem gs
to obtain the least-squares solution of the linear equation Ax = d, where x is a colunth
vector of N + 1 branch lengths (x* = [L\x, Lyx, L3y, Lay, ..., Lyy, Lxy)), d isSa
column vector of N(N — 1)/2 pairwise distances (d° = [D;,, D3, Dy4, Dys, ... D5,
D23, Dy, . DZNY . D(N l)N]) and A is an [N(N - 1)/2] X (N+ 1) matrix. T%
element of the ith row and the jth column of matrix A is given by

1 |:if the ith distance includes the jth branch

a;=
0

otherwise

An example of A for N = 5 is shown below:

O= OO —OO0O =0
—_0 = O = OO =00
—_—_ O~ OO0 =000

OO O st m m =m = O

COOOOOO = = m —
S OO = = = OO0 —

/(CI 99620 L/90%/¥//}oeNSqE-8|0IE /o] W/WOd dNo"dlWapEde;/:

The least-squares solution of the equation Ax = d is given by solving the equathp
A'Ax = Ad. It becomes x; = B™'A’'d, where B = A’A. The general expressions gf

symmetric matrices B and B™! are <
“N-1 1 1 +++ 1 N-2 7] &

1 N—-1 1 1 N—2 =3

B-| ! 1 N7U o 2| (ad)
. . . %

1 1 I -+« N-1 2 N

| N—-2 N-2 2 2 2(N-2) | S

0]

_ 3

[a b 0 0 O 0 e g

b a 0 0 0 0 e N

0 0 ¢ d d d f ©

B'!'=| 0 0 d ¢ d d [ |, (A2)

(=]
(=]

oy v

\&‘...
S~ e
~ 0

r
N
Q
SR e
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where a = N/J4(N — 2), b = (N — 4)/4(N — 2), c = 2N? — 11N + 16)/2(N — 2)(N
—3),d=—(N—4)/2(N—2XN—-3),e=—Y, f=—1/2(N— 2N —3),and g = (N
— 1)/4(N — 3). Therefore, x; becomes

1

Lix= D12+2(N 2)( -Q), (Ao33)

S

| 5
sz—" 2(N 2)(Q— p), (/’%b)

1 1 N—4 . 5
L,-Y—N_zUi—(N_2)2(P+Q)——(N_z)Z(N_3) . (3<i<N) (A,?c)

: g
Lyy= 2(N 2)(P 0)— D12 m(N—Z)(N—3)K (Ag’d)
where P= 2.3 Dy;, 0= 2N 3 Dy, U; = E/ 51Dy (i=3),and V' = Z3<j<k Djk. ]%ote

that equations (A3a) and (A3b) are equlvalent to equatlons (6a) and (6b), respectlvkly
Thus, the sum of branch lengths (S;,) for the topology in which OTUs 1 and 2?;1re
clustered becomes

&\)
N 1 1 %
S12=L1X+L2X+i§3LiY+LXY AN— 2)(P+ o)+= D12+ sy V. A4)

Equation (A4) is equivalent to equation (4).

APPENDIX B
Branch Lengths for a Purely Additive Tree

Let us consider the tree given in figure 1. If the tree is purely additive, D, =
+ L4 and Dy; — Dy = Ly — Ly, (3 < j < N). Substituting these equations
equation (6a), we have

Bl éﬁ] ¥996201/90%/v/vAoens

-
O

1 1
lezi(LlA+L2A)+———_[(N_2)(L1A—L2A)]=L1A- 5)

2AN-2)

sn Au@/\!un AIAR

The estimated branch length (L, ) is identical with the true one (L, ). The same tHing
can be proven for L,y. Therefore, the node X is identical with the node A4 in the %ee
in figure 1. N
If OTUs 1 and 2 are neighbors, they are combined into a single OTU, (fQZ)
Suppose that OTUs (1-2) and 3 are a new pair of neighbors. The estimates of brasich
lengths for AB and 3B can then be obtained correctly, as shown below. Since the ee
is purely additive,

2610z sogBd

D(123=(D13+t D23)/2=[(Lia+ La3)+(Loy+ L43)}/2=D3/2+(D13—Li4) (Aba)

and

Dy1.2)j~ D3j=D13/2+ (Dyj—L14)—(L3g+Lg))=D13/2+ Lyg— L3g (j=4). (A6b)
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Substituting these into equation (6a), we have

1

1 1
2(_N~—3_) Z [D1-2y;— D3] =ZD12+E(D13_LIA)

1
Lyoyx= ED(1-2)3 +

~
>
~
N’

1
+2(N_ 3) [((N—3)D12/2+ Lap— L3p)] =§D12+LAB-

Since L,x = Luayx — Di12/2, Lyx = L4p. On the other hand, as before, it easily can
shown that L;y = L;g. Therefore, X = B.

The above argument can be applied to any situation if the additivity of bran
lengths is maintained.

APPENDIX C
The Smallest S; Gives the True Neighbors

In the following, we show that for a purely additive tree OTUs 1 and 2 are true
neighbors when S|, is smallest among all S;’s. We first show this for the case of fogr
OTUs and then use the principle of induction to prove that it is generally true. 3

Using the results presented in the Criterion for the Minimum-Evolution Tr&
section, we can state that the condition for S|, to be smallest among the six S;/’s f@r

four OTUs is

apeoe//:sdny Bouy dgpeojumoq

D3+ D3 <Dy3+ Dy

and (A
Dy + D34 < D4+ Dys.

1717 /10e188e-0]o1E/]

Our task is to show that if S, is smallest, OTUs 1 and 2 are true neighbors. In tl&
case of four OTUs, OTUs 3 and 4 are also neighbors if OTUs 1 and 2 are neighborts
(see fig. 4). We prove our assertion by showing that when S, is smallest, only OTL@
1 and 2 (and OTUs 3 and 4) are neighbors. To prove this, we first assume that OT®
1 and 3 (and 2 and 4) are neighbors. We then should have

D3+ Dy = (b + b3) + (b, + by),

D12+D34=(b,+b2+a)+(b3+b4+a),

JOAIUN AIAR [8) AQ

from formula (7), in which b, is the branch length between the ith OTU and its nearest
interior node and a is the length between two interior nodes. Since a > 0, (D3 + D)
should be smaller than (D, + D). However, this contradicts formula (A8). Therefor@
OTUs 1 and 3 cannot be neighbors. Similarly, it can be shown that OTUs 1 and%4
are not neighbors. Therefore, only OTUs 1 and 2 (and OTUs 3 and 4) are the neighbors.

For the cases of more than four OTUSs, we use the induction principle. Assum1@
that OTUs 1 and 2 are true neighbors when S, is smallest among all S;’s for the cage
of N — 1 OTUs, we prove that the same rule applies in the case of N OTUs. §

Suppose that S, is smallest among all S;’s when there are N OTUs. If we 1gnoggz
the Nth OTU, OTUs 1 and 2 are, by assumptlon neighbors for the remaining N —
OTUs. Therefore, there are three possible pairs of neighbors when the Nth OTU 1S
added: OTUs 1 and 2, OTUs 1 and N, and OTUs 2 and N. From equation (9), we
have

N-1
Sin=S12= 2 [(Din+ Do) — D12+ Dm))/[2(N—-2)].

k=3
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FiG. A1.—A possible relationship for four OTUs (1, 2, N, and k). a, b,, b,, and c are branch len

N
oeu:s%q woJy papeojumoq

If OTUs 1 and N are neighbors, Dyy = by + by, Dy = by + ¢, Dia = by + b, + a,and
Dy = by + a + c (see fig. Al). Thus, (D\x + Dyi) — (D12 + Dyy) = —2a irrespecitive
of k, and Sy — S\, should be negative. This is contradictory to our assumption that
S, is smallest. Therefore, OTUs | and N are not neighbors. Similarly, it can be shown
that OTUs 2 and N are not neighbors—and thus that OTUs 1 and 2 should beSthe
neighbors. Since we know that our assertion is true for N = 4, it is true for gny
N (=4).
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